Overview of Scanning microwave microscopy (SMM)

- Calibration - Applications (semicon, materials, bio) - Advanced solutions

Ferry Kienberger Keysight Labs Austria ferry_kienberger@keysight.com

Agenda

- Overview & SMM Introduction
- Dopant profiling (dC/dV) for semiconductors
- Complex impedance for materials science
 - Calibration
 - Subsurface imaging
 - Resistivity from resistance
 - Dielectric quantification
 - > 2D materials (graphene)
- Multi-modal SMM solutions
 - Augmented SMM (SMM plus add-ons)
 - New modes: transmission, magnetic, and QuBits
- Bio-SMM & liquid imaging
- Summary

Collaborators & Acknowledgments (selected)

Univ. Linz, Austria

Biophysics Institute: *Georg Gramse*, *Silviu Tuca*, Peter Hinterdorfer

Keysight Austria

Enrico Brinciotti, Manuel Kasper, Giorgio Badino, Manuel Moertelmaier, Ivan Alic

Keysight Europe & USA

Matthias Fenner, Hassan Tanbakuchi Shijie Wu, Dirk Orgassa, Matt Richter Michael Dieudonne

TU Vienna, Austria

Juergen Smoliner

METAS (Bern)

Johannes Hoffmann

NIST USA

Pavel Kabos

IBEC Barcelona

Gabriel Gomila

CNR-IMM

Romollo Marcelli

Funding: EC FP7 VSMART, MC-ITN Nanomicrowave, Bio-SMM FFG Austria, MMAMA NMBP Project

Agenda

Overview & SMM Introduction

- Dopant profiling (dC/dV) for semiconductors
- Complex impedance for materials science
 - Calibration
 - Subsurface imaging
 - Resistivity from resistance
 - Dielectric quantification
 - > 2D materials (graphene)
- Multi-modal SMM solutions
 - Augmented SMM (SMM plus add-ons)
 - New modes: transmission, magnetic, and QuBits
- Bio-SMM & liquid imaging
- Summary

What is SMM?

- SMM: Atomic force microscope (AFM) interfaced with a Performance Network Analyzer (PNA)
- PNA Network analysis for microwave frequencies (1-20 GHz)
- PNA: stimulus-response instrument, Measuring magnitude and phase characteristics of a sample

Consider:

- High Frequency allows to measure also non-conductive samples (eg DC STM only on conductive samples)
- GHz Frequency results in better sensitivity (eg compared to MHz impedance AFM)
- Microwaves have good sample penetration capabilities

The Scanning Microwave Microscope

The Scanning Microwave Microscope

Huber et al., RSI, 81, 2010, 113701

SMM Contrast Mechanism: also on non-conductive samples

Regions "A" and "B" present different impedances and material properties of the two regions. Examples:

- complex permittivity ($\epsilon' + i \epsilon''$)
- complex permeability $(\mu' + i \mu'')$ & magnetic prop.
- conductivity (o)
- carrier concentration / dopant (n)

KEYSIGHT TECHNOLOGIES Optimization of SMM imaging parameters: CNR-Rome Sardi, Marcelli et al, APL 107 (2015), 033107

ADS model and Smith Chart analysis

Agenda

- Overview & SMM Introduction
- Dopant profiling (dC/dV) for semiconductors
- Complex impedance for materials science
 - Calibration
 - Subsurface imaging
 - Resistivity from resistance
 - Dielectric quantification
 - > 2D materials (graphene)
- Multi-modal SMM solutions
 - Augmented SMM (SMM plus add-ons)
 - New modes: transmission, magnetic, and QuBits
- Bio-SMM & liquid imaging
- Summary

Dopant profiling on the nano-scale with a new calibration sample

Enrico Brinciotti et al., Nanoscale, Oct 2015

Dopant profiling application to SRAM

Imtiaz et al., JAP 111, 093727; 2012

KEYSIGHT TECHNOLOGIES

-

High voltage lateral diffused MOS transistor LDMOS

High voltage lateral diffused MOS transistor LDMOS

-10¹⁹

p⁺

Brinciotti et al., submitted Aug 2016, Keysight Labs, AMS Austria, TU Vienna

n well region

Quantitative dopant calibration

n well region

 $1 \mu m$

 \mathbf{p}^+

High voltage lateral diffused MOS transistor LDMOS

Dopant profiling on the nano-scale

T. Schweinboeck and S. Hommel (Infineon Munich) Microelectronic Reliability 2014, 54, 2070-4 (upper part) Microelectronic Reliability 2016 (lower part)

Agenda

- Overview & SMM Introduction
- Dopant profiling (dC/dV) for semiconductors
- Complex impedance for materials science
 - Calibration
 - Subsurface imaging
 - Resistivity from resistance
 - Dielectric quantification
 - > 2D materials (graphene)
- Multi-modal SMM solutions
 - Augmented SMM (SMM plus add-ons)
 - New modes: transmission, magnetic, and QuBits
- Bio-SMM & liquid imaging
- Summary

Complex impedance calibration: new method

-> NO calibration sample required

(therefore no stray capacitance issues, only for non-lossy samples like semiconductors, dielectrics and oxides; not for water)

Complex impedance calibration: new method

Gramse et al., Nanotechnology 25 (2014)

Application I: Complex impedance of doped silicon

-> resistance of doped silicon

Gramse et al., Nanotechnology 25 (2014)

Application II: complex impedance & subsurface imaging

Application II: complex impedance & subsurface imaging

Gramse & Brinciotti et al., Nanotechnology (26) 2015, 35701 (9 pages). Cover

Application II: subsurface imaging appplication for failure analysis labs (backwafer imaging)

-> We can image from the back of the wafer and see through it

SMM project in EMPro:

Numerical results include E-field and complex impedance

SMM project included in EMPro

|Total E|(dB)

EMPro Modeling and SMM direct comparison

Kasper et al., Keysight AppNote 2013, 5991-2907 Oladipo et al., APL 103 (2013) 213106 Oladipo et al., APL 105 (2014) 133112

Application III: Resistivity from resistance

Where:

The SMM calibrated resistance R_m is converted into resistivity ρ using an analytical model:

$$R_m = \frac{\rho}{\delta} + \frac{\rho W_{DL}}{\pi r^2}$$

$$W_{DL} = \sqrt{2\varepsilon\mu\rho \cdot \left(\frac{\Box_{Pt} - \Box_{Si} + qV_t \cdot ln\left[\frac{N_C}{n}\right]}{q}\right)} \begin{array}{c} \text{Depletion} \\ \text{layer} \\ \text{width} \end{array}$$

$$\delta = \left(\frac{1}{\omega}\right) \left\{ \left(\frac{\mu\varepsilon}{2}\right) \left[\left(1 + \left(\frac{1}{\rho\omega\varepsilon}\right)^2\right)^{1/2} - 1 \right] \right\}^{-1/2} \frac{\text{Skin}}{\text{depth}}$$

At 19GHz the depletion width ranges from 4 nm (heavily doped) to 574 nm (low doped), and the skin depth from 10 μm to 0.7 mm, respectively.

-> changing the SMM frequency modulates the values of the skin depth allowing to adjust the SMM vertical resolution $f\phi r$ sub-surface imaging.

Brinciotti et al, Nanoscale Oct 2015

Application IV: Accurate dielectric quantification

C= e*A/d (a) Unite Element Domain Probe 0 = 0/2 H Metallic Unite Element Domain Probe 0 = 0/2 H Bacterium Bacterium (b) 0.5

Prof. Gabriel Gomilla & Maria-Chiara Biagi et al, IBEC Barcelona ACS Nano Jan 2016, 10, 280 (8p)

Application to single layer graphene:

Keysight Labs Linz, unpublished

Application to nanoparticle/QD:

Nanoparticle (Alumina, $\varepsilon_r = 9.8$)

Nanoparticle EMpro Meshing

Simulated Frequency: 10 GHz

S-Parameters	-0.011 dB
Re(S11)	0.9933
- Im(S11)	-0.1036
- S11	0.9987
Phase(S11)	-5.955 °

Software implementation in PicoView & script:

EFM-based calibration of an EFM/SMM approach curve on Si substrate

equivalent circuit: $Y = G + j^*B = G + j^*\omega^*C_{\text{parallel}};$ G = Real(Y); $C_{\text{parallel}} = \text{Imaginary}(Y) / \omega;$ Impedance of series RC equivalent circuit: $Z_{\text{series}} = R_{\text{series}} + j^*X = R_{s$ $1/(j^*\omega^*C_{series});$ $R_{series} = Real(Z);$ $C_{series} = (-1)/(\omega * Imaginary(Z));$

2

Agenda

- Overview & SMM Introduction
- Dopant profiling (dC/dV) for semiconductors
- Complex impedance for materials science
 - Calibration
 - Subsurface imaging
 - Resistivity from resistance
 - Dielectric quantification
 - > 2D materials (graphene)
- Multi-modal SMM solutions
 - > Augmented SMM (SMM plus add-ons)
 - New modes: transmission, magnetic, and QuBits
- Bio-SMM & liquid imaging
- Summary

Multi-modal Keysight solutions: from products to solutions

Source meter unit SMU B2900 ECal unit for advanced SMM for advanced voltage spectroscopy impedance calibration in air and liquid 12 _ 12 _ 210.0000 READ 00.00001 nA 10 50000 M KEYSIGHT 44693-60001 SMM 3 A CAUTION Conver critical for achieving precified performance PORT A PORT CAUTION 110 V DC /+10-Blues MAX AVOID STATIC DISCHARG **EMPro/ADS Modeling Dielectric probe kit for liquid measurements** (c) 1: SMM EMPro E-Field with tip on gold & complex permittivity at GHz KV/m 1 (d) 2: SMM EMPro E-Field with tip in air KV/r

1. SMM+Ecal: advanced impedance calibration using time-gating, network analysis and de-embedding

Applications for advanced RF/electrical engineer labs

$$A = \frac{(1+S_{11})(1-S_{22})+S_{12}S_{21}}{2S_{21}} \qquad B = Z_0 \frac{(1+S_{11})(1+S_{22})-S_{12}S_{21}}{2S_{21}}$$
$$C = \frac{1}{Z_0} \frac{(1-S_{11})(1-S_{22})-S_{12}S_{21}}{2S_{21}} \qquad D = \frac{(1-S_{11})(1+S_{22})+S_{12}S_{21}}{2S_{21}} .$$
(2)

KEYSIGHT TECHNOLOGIES Kasper et al, May 2016 at IEEE IMS, San Francisco, 4 page paper conference proceeding

Page

2. SMM + SMU for advanced voltage spectroscopy

Applications on electronic devices (eg MOS capacitors) and eg varactors from STMicroelectronics France

Measurement schematics (left) and SMM results (right)

3. Transmission SMM: ADS and EMPro Modeling

S21 transmission shown in Fernandez et al, EuMW 2015

Keysight Labs Linz, Silviu Tuca & Giulio Campagnaro et al, Microscopy & Analysis July 2015, Issue 19, pp 9-12

Transmission S21 imaging: sample plate

S21 sample plate integrated in 5600 SMM

Prototype sample plate CNR-IMM

*Collaboration with CNR-IMM Rome, Romolo Marcelli et al, Review Scientific Instruments, April 2016, 12 pages

4. SMM for magnetic measurements

Applications for magnetic integrated circuits, MRAM's, ferromagnetic resonance FMR, and multi-ferroic samples

Fig. 1. Schematic of the experimental setup

$$S_{11} = \frac{Z_{total} - Z_0}{Z_{total} + Z_0} \tag{1}$$

 $Z_{total} = Z_{Resonator} + Z_{Sample}$. Here, $Z_{Resonator}$ is the impedance of the $\lambda/2$ coaxial line resonator. Z_{Sample} is a bi-layer system with YIG film and GGG substrate, defined as:

$$Z_{\text{Sample}} = Z_{\text{YIG}} \frac{Z_{\text{GGG}} + iZ_{\text{YIG}} \tan(k_{\text{YIG}} t_{\text{YIG}})}{Z_{\text{YIG}} + iZ_{\text{GGG}} \tan(k_{\text{YIG}} t_{\text{YIG}})}$$
(2)

Fig. 3. The measured S₁₁ for the RF sputtered YIG with respect to different external magnetic fields. Inset shows the hysteresis behavior of the sample.

18,760

Frequency (GHz)

18,762

18,764

18.758

18,756

Magnetic EMPro modeling results

μ,	Z _{sample} (Ω)	Conductance (fS)	Capacitance (aF)	Joseph Hardly et al., Journal of Magnetism and Magnetic Materials
1.0001711+j*0.9998	1.246-j*1308812.375	727.38	12.16	2016, 420, 62 <mark>-69</mark> Page

5. SMM for quantum electronic Qubits

Research collaboration with UC London (Prof Neil Curson) and London quantum technology hub

- Characterizing buried nanostructures and electrical properties of atomic thick delta dopant layers used for quantum processes.
 - Talk at silicon quantum electronic workshop in June 2016.

- Gramse et al, 2018

Agenda

- Overview & SMM Introduction
- Dopant profiling (dC/dV) for semiconductors
- Complex impedance for materials science
 - Calibration
 - Subsurface imaging
 - Resistivity from resistance
 - Dielectric quantification
 - > 2D materials (graphene)
- Multi-modal SMM solutions
 - Augmented SMM (SMM plus add-ons)
 - New modes: transmission, magnetic, and QuBits

Bio-SMM & liquid imaging

Summary

7500 Bio-SMM in air: E. Coli bacteria over highly doped Si with SiO2 pillars

Topography

Topography

Microwave Amplitude

Microwave Amplitude

Capacitance

Capacitance

Keysight Labs Linz and JKU Linz, Tuca et al, Microscopy & Analysis July 2015, Issue 19, pp 9-12

CHO cells in humid air (f=20 GHz)

Single *E-coli* bacteria imaged at 20 GHz frequency using the scanning microwave microscope (SMM)

Silviu-Sorin Tuca¹, Georg Gramse¹, Manuel Kasper², Enrico Brinciotti², Yoo-Jin Oh¹, Giulio Maria Campagnaro², Giorgio Badino², Peter Hinterdorfer¹, Ferry Kienberger²

1 Johannes Kepler University of Linz. Institute of Biophysics. Gruberstrasse 40, A-4020, Linz, Austria 2 Keysight Technologies Austria GmbH, Measurement Research Lab, Gruberstrasse 40, A-4020, Linz, Austria

EMPro of tip-sample mashing

Contact & tapping mode

Tuca et al, Nanotechnology 2016, 27, 135702 (9p)

Bio-measurements in liquid using the 7500 SMM

N9721B Liquid cell:

Keysight Labs Linz, Microscopy&Analysis AppNote March 2016

Application to cells in liquid: meshing, E-fields and complex impedance values

Tuca et al, Nanotechnology 2016, 27, 135702 (9p)

Single molecule research

ARTICLE

Received 12 Apr 2016 | Accepted 8 Aug 2016 | Published 3 Oct 2016

A 17 GHz molecular rectifier

Data interpretation using ADS Smith chart analysis and EMPro modeling

-j0.5

3 GHz

-j1.0

Tuca et al, Nanotechnology 2016, 27, 135702 (9p)

3. SMM + dielectric probe kit for complex permittivity

Tuca et al, Nanotechnology 2016, 27, 135702 (9p)

Agenda

- Overview & SMM Introduction
- Dopant profiling (dC/dV) for semiconductors
- Complex impedance for materials science
 - Calibration
 - Subsurface imaging
 - Resistivity from resistance
 - Dielectric quantification
 - > 2D materials (graphene)
- Multi-modal SMM solutions
 - Augmented SMM (SMM plus add-ons)
 - New modes: transmission, magnetic, and QuBits
- Bio-SMM & liquid imaging
- Summary

Summary general:

Ability to do **broadband** measurements, at frequencies from **1 GHz up to 20 GHz**,

- of calibrated complex impedance in materials science,
- of calibrated dopant profiles in semicon,
- of **C-V curve** spectra,
- of cells and electrochemistry in liquid,

and to compare the data from all these measurements with **semiquantitave 3D models** implemented in EMPro.

For all of this we **offer integrated** solutions based on several of our products: PNA-AFM, SMU, Ecal, dielectric probe kit, EMPro/ADS, ...

Various workflows have been implemented showing different use cases.

Summary details:

Differentiators

- Calibrated complex impedance
 - Capacitance and resistance: 0.5 aF sensitivity, differences of 20 Ohm can be measured up to 20 kOhm
- *Materials properties can be determined:*
 - From capacitance the complex permittivity/dielectric constant (~10% accuracy)
 - From resistance the resistivity (aka SSRM)
- Calibrated dopant density for both silicon and compound semiconductors, as well as other electronic materials, large dynamic range for dopant density
- All info in one scan (topo, impedance, dopant) with high spatial resolution: ~ 10 nm
- Broadband frequencies (1-20 GHz) allowing for variable depth subsurface imaging and frequency selective dopant profiling
- The 7500 bio-SMM works in liquid
- Technology synergy with other Keysight products: EMPro; source-meter unit SMU; Ecal calibration unit; dielectric probe kit for permittivity
 KEYSIGHT TECHNOLOGIES

Thanks for your interest and your attention.

ferry_kienberger@keysight.com

